1
电池片
电池片是组件最核心的元件,主要用于将光能转化为电能。电池片经过串联、并联,达到一定的额定输出功率和电压后,即形成光伏组件。光伏组件经过组合形成光伏方阵,与控制器、蓄电池组、逆变器等部件连接组成光伏发电系统。
太阳能电池按原材料分为单晶硅、多晶硅、非晶硅太阳能电池。晶硅电池技术是以硅片为衬底的,依据PN结进行光生载流子分离发电的。根据原材料和电池制备技术的差异,晶硅电池分为P型电池和N型电池。
P型硅片是在硅料中掺杂硼元素制成,P型电池制备技术有传统的AL-BSF(铝背场)和PERC技术;而N型硅片是在硅材料中掺杂磷元素制成,N型电池制备技术较多,包括PERC、TOPCon、IBC和HJT等。
2
玻璃
光伏玻璃是一种钠钙硅盐酸玻璃,主要用于光伏组件的封装。光伏玻璃会直接影响光伏组件的发电效率和使用年限。
光伏玻璃一般为低铁钢化玻璃或者半钢化玻璃,具有以下特性。一是通透性好。透光率是影响光伏电池转换效率的关键因素。光伏玻璃需具有高透光性和对1200nm红外光的较高反射率。二是机械强度高。
耐冲击,可承受2400Pa风压和5400Pa雪压,起到支撑和保护作用。三是耐久性好。受气候和地理位置影响,组件需在露天、昼夜温差大的环境中作业,需具备耐腐蚀、耐候性特质。
3
胶膜
光伏封装胶膜是光伏组件的重要组成部分,位于电池片上下两侧。胶膜的首要作用是黏合电池与玻璃、背板。其次,胶膜可以起到封装防护作用,保护电池电路不受外界环境干扰,延长组件使用寿命。
此外,封装胶膜可增强光伏组件的透光性,进而提升组件的发电效率。最后,胶膜还能在组件生产、存储、安装和使用过程中起到结构支撑和定位电池的作用。
按照材料来看,主流胶膜主要有EVA、POE、EPE、PVB。EVA胶膜为主流的光伏封装胶膜,透光性好、加工性能好、供应稳定且成本较低,但存在高水汽渗透、低抗冲击性、抗PID性能不稳定等缺点。 POE胶膜水汽透过率低、抗PID性能好,适用于双玻组件、N型组件的封装,但加工属性差、成本高。
4
背板
光伏背板是用作背面保护的封装材料,一般用于单玻组件。光伏背板分为含氟背板和非氟背板,含氟背板有TPT、TPE、TPC、
CPC,非氟背板有PET、PA/PO等。
光伏背板主要用于抵抗湿热等环境对电池片、胶膜等材料的侵蚀,起到耐腐蚀、耐候、防氧化及绝缘保护作用,可以有效延长组件的使用寿命。白色背板反射率高,能提高组件的转换效率。同时,红外反射率高的特性,也便于降低组件的工作温度。
5
边框
光伏边框是安装于玻璃外延的边框,主要用于固定、密封太阳能电池组件,便于光伏组件的运输与安装。边框的安装,有利于保护玻璃边缘,加强光伏组件密封性能。同时,边框是承载组件与支架的链接载体,边框的使用,可以提高组件整体的机械强度和抗载能力,从而延长组件寿命。
6
焊带
光伏焊带是在铜带表面涂敷锡基焊料形成的复合导电材料,应用于光伏电池片的串联或并联,发挥汇集电流和导电的作用,是光伏组件焊接过程中的重要材料。
光伏焊带分为互连焊带和汇流焊带。互连焊带用于连接光伏电池片,收集、传输光伏电池片电流。汇流焊带用于汇集电池串产生的电流,并引出至接线盒内。焊带对于电流收集有直接影响,进而影响组件的功率及发电效率。
行业早期使用的是平焊带,随着行业发展,目前高效组件均采用圆焊带。
7
硅胶
硅胶主要用于粘接、密封层压好的玻璃光伏组件,粘接边框与玻璃、接线盒与背板(或玻璃),起到密封和连接作用。
根据使用位置的不同,硅胶分为密封胶和灌封胶。密封胶使用在边框卡槽内和接线盒与背板底部,灌封胶一般用于接线盒内部,主要作用是保护接线盒内部电路。
8
接线盒
接线盒主要由接线盒盖、密封圈、二极管、散热装置、盒体、导线、连接器组成。接线盒的主要作用是将太阳能电池产生的电力与外部线路进行连接。
可以对光伏组件引出线起到密封、防水防尘的作用。接线盒还有保护光伏组件系统运行安全的作用,如果组件发生短路,接线盒会自动断开短路电池串,防止整个系统被烧坏。
Прямое преобразование света - электричества - это использование фотоэлектрических эффектов для преобразования энергии солнечного излучения непосредственно в электрическую энергию, а основным устройством для преобразования света - электричества являются
солнечные батареи. Солнечная батарея - это устройство, которое преобразует солнечную световую энергию непосредственно в электрическую энергию из - за фотовольтового эффекта. Это полупроводниковый фотодиод, который преобразует солнечную
энергию в электричество и генерирует ток, когда солнечный свет попадает на фотодиод. Когда многие батареи соединяются последовательно или параллельно, они могут стать квадратами солнечных батарей с большей выходной мощностью. Солнечные
батареи - это многообещающий новый источник питания с тремя преимуществами: постоянство, чистота и гибкость. Солнечные батареи имеют длительный срок службы, и до тех пор, пока солнце существует, солнечные батареи могут быть инвестированы и
использованы в долгосрочной перспективе; Солнечные батареи не вызывают загрязнения окружающей среды по сравнению с тепловой и ядерной энергией.
Основным принципом фотоэлектрической генерации является фотоэлектрический эффект полупроводника. Когда фотон облучает металл, его энергия может быть полностью поглощена каким - то электроном в металле, и энергия, поглощаемая
электроном, достаточно велика, чтобы преодолеть внутреннюю гравитационную работу металла, сбежать от поверхности металла и стать фотоэлектроном. Атомы кремния имеют четыре внешних электрона и становятся полупроводниками N - типа, если
атомы с пятью внешними электронами, такими как атомы фосфора, смешиваются с чистым кремнием; Если атомы с тремя внешними электронами, такими как атомы бора, смешиваются в чистый кремний, образуется полупроводник P - типа. Когда
тип P и тип N соединяются, контактная поверхность образует разность потенциалов и становится солнечной батареей. Когда солнечный свет попадает в узел P - N, дырка перемещается из полярной области P в полярную область N, а электроны перемещаются
из полярной области N в полярную область P, образуя ток.
Область применения:
I. Солнечные источники энергии для пользователей:
(1) Небольшие источники питания варьируются от 10 до 100Вт и используются в отдаленных и безэлектрических районах, таких как плато, остров, пастбища, пограничные посты и другие военные и гражданские бытовые электропитания, такие
как освещение, телевидение, магнитофоны и т. Д.
(2) 3 - 5 кВт Домашняя крыша подключена к энергосистеме;
(3) Фотоэлектрические водяные насосы: решение проблемы глубоководных скважин в районах без электричества для питья, орошения.
II. Транспортная область, такая как аэронавигационные маяки, сигнальные огни движения / железных дорог, сигнальные / знаковые огни движения, уличные фонари, огни высотных препятствий, автомобильные / железнодорожные радиотелефонные
будки, беспилотное питание дао и так далее.
III. Сфера связи / связи: солнечные беспилотные микроволновые ретрансляционные станции, станции обслуживания оптических кабелей, системы радиовещания / связи / пейджеров; Фотоэлектрические системы сельской несущей телефонной
связи, небольшие аппараты связи, GPS - питание солдат и т.д.
IV. Нефть, океаны, метеорология: системы солнечных источников питания для катодной защиты нефтяных трубопроводов и затворов водохранилищ, бытовые и аварийные источники питания нефтяных буровых установок, оборудование для морских
испытаний, оборудование для метеорологических / гидрологических наблюдений и т.д.
В - пятых, источник питания для бытовых ламп: например, дворовые фонари, уличные фонари, портативные фонари, кемпинговые фонари, альпинистские фонари, рыболовные фонари, черные фонари, резиновые лампы, энергосберегающие лампы
и так далее.
VI. Фотоэлектрические электростанции: 10 КВт - 50 МВт автономные фотоэлектрические электростанции, ветряные (дрова) комплементарные электростанции, различные крупные автостоянки зарядных станций и так далее.
Солнечные здания объединяют солнечную энергию с строительными материалами, чтобы сделать будущее