国家高新技术企业你身边的太阳能发电站源头厂家

产品中心 解决方案 经销代理 工程案例

行业动态
太阳能光伏发电必掌握的基本知识
1、太阳能光伏系统的组成和原理
  太阳能光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。
太阳能光伏系统具有以下的特点:
- 没有转动部件,不产生噪音;
- 没有空气污染、不排放废水;
- 没有燃烧过程,不需要燃料;
- 维修保养简单,维护费用低;
- 运行可靠性、稳定性好;
- 作为关键部件的太阳电池使用寿命长,光伏发电设备价格晶体硅太阳电池寿命可达到25年以上;
根据需要很容易扩大发电规模。

  光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。

  光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站,如3.75kWp家用型屋顶发电设备、敦煌10MW 项目。其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。图4-1是一个典型的供应直流负载的光伏系统示意图。其中包含了光伏系统中的几个主要部件:

  光伏组件方阵:由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。

  蓄电池:将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。

  控制器:它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD系列的控制器就集成了上述三种功能。

  逆变器:在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。

  太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。光伏系统的应用具有多种形式,但是其基本原理大同小异。对于其他类型的光伏系统只是在控制机理和系统部件上根据实际的需要有所不同,下面将对不同类型的光伏系统进行详细地描述。

 2、光伏系统的分类与介绍

  光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种电子元件技术,这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是较少受地域限 制,因为阳光普照大地;光伏系统还具有安全可靠、无噪声、低污染、无需消耗燃料和架设输电线路即可就地发电供电及建设同期短的优点。

  光伏发电是根据光生伏特效应原理,利用太阳能电池将太阳光能直接转化为电能。不论是独立使用还是并 网发电,光伏发电系统主要由太阳能电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,不涉及机械部件,所以,光伏发电设备极为精 炼,可靠稳定寿命长、安装维护简便。理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源 无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。目前,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。

  太阳能光伏相关术语

  大气质量AM(Air Mass) 太阳光通过大气层的路径长度,简称AM,外层空间为AM 0,阳光垂直照射地球时为AM1(相当春/秋分分阳光垂直照射于赤道上之光谱),太阳电池标准测试条件为AM 1.5(相当春/秋分阳光照射于南/北纬约48.2度上之光谱)。

  日照强度(Irradiance) 单位面积内日射功率,一般以W/㎡或mW/c㎡为单位,AM 0之日照强度超过1300W/㎡,太阳电池标准测试条件为1000W/㎡(相当于100mW/c㎡)。

  日射量(Radiation) 单位面积于单位时间内日射总能量,一般以百万焦尔/年。平方米(MJ/Y.㎡)或百万焦尔/月。平方米(MJ/M.㎡),1焦尔为1瓦特功率于1秒钟累积能量(1J=1W.s)。

  太阳能电池(Solar Cell) 具有光伏效应(Photovoltaic Effect)将光(Photo)转换成电(Voltaic)的组件,又称为光伏电池(PV Cell),太阳能电池产生的电皆为直流电。

  太阳光电(Photovoltaic)简称 PV(photo=light光线,voltaics=electricity电力),由于这种电力方式不会产 生氮氧化物,以及对人体有害的气体与辐射性废弃物,被称为「清净发电技术」。PV System,则是将太阳光能转换成电能整套系统,称为太阳光电系统或光伏系统,依分类有独立型、并联型与混合型。

  PV模板(PV Module) 将多只太阳电池串联提升电压,并以坚固外材封装以利应用,又称为模块(PV Pannel或PV Module)。

  PV组列(PV String) 将模板多片串联成一列,组列的目的在提高电压,将10片模板电压20伏特5安培串联成组列,组列电压即有200伏特、电流为5安培。

  PV数组(PV Array) 将多个组列并联即为数组。数组目的在提高电流,将5串组列电压200伏特5安培并联成数组,数组电压为200伏特、电流为25安培。由1个组列构成的数组,数组就相当于组列。

  独立型系统(Stand Along System) 将多只太阳电池串联提升电压,并以坚固外材封装以利应用,又称为模块(PV Pannel或PV Module)。

  并联型系统(Grided System) PV数组输出经换流器转换成交流与市电或自备发电机并联,系统无需配置蓄电装置。

  混合型系统(Hybrid System) 独立型与并联型混合体,在天灾市电停止供电时,并联型系统会停止运作,混合型可切换于独立型继续供电,因此又称为防灾型。

  (kW)千瓦,发电设备容量的计算单位;1瓩=1000瓦(Watt)。

  (kWp)P 表peak,代表峰值。指装设的太阳电池模板在标准状况下,(即模板温度25℃、转换效率15%)最大发电量总和。通常1峰瓩可发3-5度电。

  (kWh) 为衡量发电用量的单位,指使用1000瓦的电器设备1小时所消耗的电力,俗称「度」。

  MW(Mega Watt)百万瓦,在衡量太阳光电公司产能时通常采用单位。

  安培小时Ah (Ampere Hour) 另一种电能量表示方式,通常用于蓄电池容量,50Ah表示5安培10小时容量或1安培50小时容量,唯蓄电池容量不能全部利用。

  负载(Load)特定时间内,每单位时间输出的电力或电流。

  建材一体太阳电池模板(BIPV,Building Integrated Photovoltaics)将太阳光电系统结合建筑设计的一种节能建材产品,可直接取代传统屋顶、窗户、外墙及遮阳(雨)棚等。可大幅改善传统太阳光电系统笨重外型,不但美观还可以增加空间效益;打造另一个太阳光电建筑产业的市场商机 。

电力调节器(Power Conditioner) 负责电力调节功能设备的统称,对蓄电池充电/放电调节的控制器,或将直流转换交流调节的换流器皆是。

 1, состав и принципы солнечной фотоэлектрической системы 



 солнечная фотоэлектрическая система состоит из следующих трех компонентов:  электроэлектронное оборудование и аккумуляторы или другие накопители и вспомогательные генераторы, такие, как заряд, разрядный контроллер, инвертор, контрольно - измерительные приборы и компьютерный контроль. 



 солнечная фотоэлектрическая система имеет следующие характеристики: 



 - ни вращающихся частей, ни шума; 



 - отсутствие загрязнения воздуха и сброс сточных вод; 



 - Без процесса горения, без топлива; 



 - простота обслуживания и низкая стоимость обслуживания; 



 - надежность и стабильность работы; 



 - длительность срока службы солнечных батарей, являющихся ключевыми компонентами, и срок службы кристаллических кремниевых солнечных батарей может превышать 25 лет; 



 по мере необходимости легко увеличить объем производства. 



 фотоэлектрические системы широко применяются, и основные формы применения фотоэлектрических систем можно разделить на две основные категории: автономные и сетевые.  Основными областями применения являются электроснабжение домашних хозяйств в космических летательных аппаратах, системах связи, микроволновых ретрансляторах, телевизионных перекачках, фотоэлектрических насосах и в районах, где нет электричества и электричества.  по мере развития технологий и необходимости устойчивого развития мировой экономики развитые страны стали систематически поощрять производство энергии в городских фотоэлектрических сетях, главным образом в виде строящихся на крыше фотоэлектрических систем и централизованных крупных сетевых систем типа MW, а также в области транспорта и городского освещения. 



 размеры и виды применения фотоэлектрических систем варьируются, например, от большой протяженности до 0,3 - 2W солнечных садовых ламп, больших до MW солнечных фотоэлектрических электростанций, таких, как 3,75 kwp бытовой крыши генератора и 10 МВт в дуньхуане.  его прикладные формы также разнообразны и широко применяются в таких областях, как быт, транспорт, связь, применение космической техники и т.д.  Хотя размеры фотоэлектрических систем неодинаковы, их структура и принципы работы в основном одинаковы.  Рисунок 4 - 1 представляет собой типичную схему фотоэлектрических систем, обеспечивающих постоянный поток нагрузки.  В нем содержится несколько основных компонентов системы фотовольт: 



 решетка фотоэлектрических компонентов: компоненты солнечных батарей (именуемые также фотоэлектрическими элементами) преобразуются в электрические выходы под воздействием солнечного света в соответствии с последовательностью и параллельностью системных потребностей и представляют собой основные компоненты солнечной фотоэлектрической системы. 



 аккумуляторные батареи: хранение электрической энергии, получаемой от солнечных батарей, при недостаточном освещении или вечером, или когда потребность в нагрузке превышает количество электричества, вырабатываемого солнечными батареями, для удовлетворения потребностей нагрузки в энергии, которая является частью солнечной фотоэлектрической системы.  В настоящее время солнечные фотоэлектрические системы обычно используются свинцово - кислотные аккумуляторы, для более высоких требований систем, как правило, используются герметизированные свинцово - кислотные аккумуляторы с глубоким разрядным клапаном, пигментные аккумуляторы с глубоким разрядом и так далее. 



 контроллер: он регулирует и контролирует условия наполнения и разрядки аккумуляторов, а также контролирует выход электрической энергии из солнечных батарей и аккумуляторов на нагрузку в соответствии с потребностями нагрузки в питании, является центральным контрольным элементом всей системы.  по мере развития солнечной фотоэлектрической промышленности функции регулятора становятся все более мощными, и наблюдается тенденция к интеграции традиционных компонентов управления, инверторов и систем мониторинга, таких, как системы SPP и SMD компании AES. 



 инвертор: в солнечной фотоэлектрической системе, если она содержит переменную нагрузку, то необходимо использовать инвертор оборудования для преобразования постоянного тока, производимого в сборках солнечных батарей, или постоянного тока, высвобождаемого аккумуляторами, в требуемый переменный ток нагрузки. 



 основной принцип работы системы электроснабжения солнечных фотовольт заключается в том, чтобы заряжать электроэнергию, получаемую от элементов солнечных батарей, через контроллер, к аккумуляторам или, если она удовлетворяет требованиям нагрузки, напрямую снабжать электроэнергией, если солнце не светит или ночью, аккумуляторы под контролем контроллера, к фотоэлектрическим системам, содержащим переменные нагрузки,  Необходимо также увеличить инвертор для преобразования постоянного тока в переменный ток.  применение фотоэлектрических систем имеет различные формы, однако его основные принципы существенно отличаются друг от друга.  Другие типы фотоэлектрических систем различаются только по механизмам управления и компонентам системы в зависимости от фактических потребностей, которые подробно описаны ниже в отношении различных типов фотоэлектрических систем. 



 2, классификация и введение фотоэлектрических систем 



 фотоэлектрическая энергия представляет собой электронно - элементную технологию прямого преобразования фотоэлектрической энергии в электрическую, используя эффект фотоэлектрических вольт на полупроводниковом интерфейсе, ключевым элементом которого являются солнечные батареи.  солнечные батареи в сочетании с такими элементами, как регулятор мощности, образуют фотоэлектрические установки.  преимущества фотоэлектрической энергии менее ограничены географическими рамками, поскольку солнце светит на землю;  фотоэлектрические системы также имеют преимущества безопасности и надежности, без шума, загрязнения, без потребления топлива и прокладки линий электропередач для местной выработки электроэнергии и короткого периода строительства за тот же период. 



 фотоэлектрическая энергия преобразуется непосредственно в солнечную энергию с помощью солнечных батарей в соответствии с принципом фотоэлектрических эффектов.  фотоэлектрические системы, независимо от того, используются ли они самостоятельно или параллельно, в основном состоят из трех основных компонентов: панелей солнечных батарей (агрегатов), контроллеров и инверторов, которые состоят главным образом из электронных элементов, не связанных с механическими компонентами, поэтому фотоэлектрические установки чрезвычайно рафинированы, надежно стабильный срок службы и простота в обслуживании.  Теоретически, фотоэлектрические технологии могут использоваться в любой ситуации, требующей электричества, на борту космического аппарата, на бытовых электропитаниях, на электростанциях с большой мощностью до мегаватт, на маленьких игрушках и на всех фотоэлектрических установках.  Основными элементами солнечной фотоэлектрической энергии являются солнечные батареи (таблетки), монокристаллический кремний, поликристаллический кремний и мембранные батареи.  В настоящее время наибольшее количество монокристаллических и поликристаллических батарей, аморфных элементов, используемых в небольших системах и вспомогательном питании калькулятора, и т.д. 



 солнечно - фотоэлектрические термины 



 атмосферная масса AM (Air Mass) длина пути к солнцу, проходящему через атмосферу, именуется AM 0, космическое пространство AM 0, при вертикальном солнечном облучении земли AM1 (эквивалентно весеннему / осеннему солнечному лучу, перпендикулярно излучаемому на экваториальном спектра) и стандартное условие для испытаний солнечных батарей AM 1,5 (эквивалентное весеннему / осеннему солнечному излучению в диапазоне около 48,2 градуса Южной / северной широты). 



 удельная прочность солнечного освещения (Irradiance) мощность солнечного излучения на единицу площади, как правило, W /, квадратных метров или mW / c, интенсивность дневного освещения am 0 превышает 1300W /, квадратных метров, стандартных условиях солнечных батарей 1000W /, квадратных метров (соответствует 100mW / c, 100mw / c2). 



 Общий объем солнечного излучения (Radiation) в единицах площади составляет 1 млн.  квадратный метр (мJ / Y.  квадратный метр (мJ / м., мJ / м2) с суммарной мощностью в 1 Вт за 1 секунду (1J = 1W.s). 



 солнечные батареи (Solar Cell) с фотоэлектрическим эффектом (Photovoltaic Effect) преобразуют свет (Photo) в электрические компоненты (Voltaic), известные также как фотоэлектрические батареи (PV Cell), которые вырабатывают электроэнергию из солнечных батарей. 



 солнечные фотоэлектрические (Photovoltaic) сокращены на PV (photo = light лучей, voltaics = electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electricity electric  PV System представляет собой систему преобразования солнечной фотоэнергии в комплекс электрической энергии, известную как солнечная фотоэлектрическая или фотоэлектрическая система с отдельными типами, параллельными и смешанными по категориям. 



 шаблон PV (PV Module) позволяет последовательно повышать напряжение нескольких солнечных батарей и герметизировать их прочным внешним материалом, который также известен как модуль (PV Pannel или PV Module). 



 серия PV (PV String) соединяет шаблоны в ряд, который направлен на повышение напряжения, состоящее из 10 листов опалубочного напряжения 20 вольт 5 ампер в последовательном порядке и состоящее из 200 вольт и 5 ампер в электрическом токе. 



 массив PV (PV Array) соединяет несколько групп, т.е.  массив предназначен для увеличения электрического тока, соединяющего в массив напряжения 5 рядов в 200 вольт 5 ампер, напряжение массива в 200 вольт и ток в 25 ампер.  массив, состоящий из одного столбца, равен этому столбцу. 



 отдельная система (Stand Along System) обеспечивает последовательное повышение напряжения нескольких солнечных батарей, а также обеспечивает их применение с помощью прочных внешних материалов, известных также как модули (PV Pannel или PV Module). 



 параллельная система (Grided System) PV (Grided System) преобразует вывод массива в переменный ток, связанный с городским электрическим или автономным генератором, который не нуждается в установке аккумулятора. 



 гибридная система (Hybrid System) является автономным и параллельным соединением, и в случае отключения электроснабжения в городе стихийного бедствия параллельная система прекращает функционировать, и гибридные системы могут переключаться на автономное непрерывное питание, поэтому они называются превентивными. 



 (kw) киловатт, единица измерения мощности генератора;  1 киловатт = 1000 ватт. 



 (kwp) P - лист peak, представляющий пиковую величину.  максимальный объем выработки (т.е. 25°С при температуре опалубки и 15 - процентном коэффициенте конверсии) в стандартном режиме.  как правило, 1 пик киловатт - час может вырабатывать 3 - 5 градусов электричества. 



 (kWh) единица измерения энергопотребления означает электроэнергию, потребляемую в течение одного часа на электрическом оборудовании мощностью 1000 ватт, обычно именуемое "градусом". 



 MW (Mega Watt) млн. 



 ампер - час Ah (ампер - Хаур) является еще одним способом электрической энергии, обычно используемым для емкости аккумулятора, 50 AH означает 5 ампер - 10 часов или 1 ампер - 50 часов, за исключением тех случаев, когда емкость аккумулятора не может быть использована полностью. 



 загрузка (Load) в определённое время, каждая единица времени, выходная мощность или ток. 



 в качестве одного из видов энергосберегающего строительного материала, разработанного в сочетании с солнечными фотоэлектрическими системами (BIPV, Building Integrated Photovoltaics), можно непосредственно заменить традиционные крыши, окна, внешние стены и навесные (дождевые) навесы.  можно значительно улучшить традиционную солнечную фотоэлектрическую систему, не только эстетическое, но и пространственная эффективность;  создать еще одну рыночную возможность для строительства солнечной фотоэлектрической промышленности. 



 электрический регулятор (Power Conditioner) отвечает за общее наименование оборудования для выполнения функций регулирования электрической энергии, контроллера для регулирования заряда / разрядки аккумуляторов или переключателя для регулирования переменного тока в процессе преобразования постоянного тока.

返回
列表
上一条

太阳能光伏发电的优势和裂势

下一条

别让馅饼变陷阱 屋顶光伏正在"急刹车"